

Bioorganic & Medicinal Chemistry 16 (2008) 1236-1241

Bioorganic & Medicinal Chemistry

Imidazo[1,2-a]pyridine derivatives as inhibitors of TNF- α expression in T cells

Jan Rether, a Gerhard Erkel, Timm Anke, Johan Bajtner and Olov Sterner, a

^aInstitut für Biotechnologie und Wirkstoff-Forschung e. V., Erwin-Schrödinger-Str. 56, D-67663 Kaiserslautern, Germany ^bDivision of Organic Chemistry, University of Lund, PO Box 124, S-22100 Lund, Sweden

> Received 9 May 2007; revised 11 October 2007; accepted 23 October 2007 Available online 26 November 2007

Abstract—Novel hexahydroimidazo[1,2-a]pyridines prepared by the addition of ethyl (1-benzylimidazolidin-2-ylidene)acetate (2) to the fungal metabolite podoscyphic acid (1a) and esters of 1a have been evaluated for their ability to inhibit the inducible TNF-α promoter activity in T cells. The methyl ester 3b is the most potent, inhibiting the TNF-α driven reporter gene expression in Jurkat T cells with an IC₅₀-value of 2.0 μg/ml (3.6 μM). In addition, compound 3b inhibited the inducible TNF-α production in the myelomonocytic U937 cells with an IC₅₀-value of 4.6 μM.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The human TNF- α gene is expressed in a variety of cell types (e.g., T and B lymphocytes and macrophages). It is one of the major proinflammatory cytokines which regulates further cytokine induction, especially of IL-1B and IL-6, and plays a role in many human diseases including cancer and immune disorders, as well as in inflammatory diseases like septic shock, rheumatoid arthritis and Crohn's disease. In quiescent cells the biosynthesis of TNF-α is tightly controlled. However, diverse extra-cellular stimuli, including antigens, viruses, bacterial products, cytokines or exposure to calcium ionophores, lead to a rapid induction of TNF-α gene expression. The regulation of TNF-α gene expression in eukaryotic cells is complex with differences across species and cell types. The common end point of these diverse signal transduction pathways is the activation of transcription factors of the NF-AT, NF-κB and ATF2/Jun family, which bind to the corresponding binding sites in the promoter of the TNF-α gene and induce transcription. It has recently been shown that distinct transcription factor complexes form on different activator recognition sites on the TNF-α promoter in

response to distinct extra-cellular stimuli.² Drugs which block TNF-α in clinical practice or in clinical trials are either monoclonal antibodies to TNF-α or interfere with TNF-α receptors, examples are Enbrel (Amgen/Wyeth), Remicade (Centocor/Schering-Plough/Tanabe Sieyaku) and Humira (Abbott).^{3,4} An example is the teratogenic drug thalidomide which was shown to have both antiinflammatory and anti-oncogenic properties.⁵ Novel low molecular weight inhibitors, which specifically interfere with components of the different intracellular signalling pathways or inhibit the activation of the transcription factors responsible for the expression of TNF- α , could be useful as novel therapeutics in inflammation.^{6,7} During an evaluation of the possibility to create a diverse library of semisynthetic derivatives based on the strongly electrophilic fungal metabolite podoscyphic acid (1a), imidazo[1,2-a]pyridine derivatives were shown to be obtained by the addition of imidazolidin-2-ylideneacetic acid derivatives with 1. When screened for various biological activities, the products were found to be efficient inhibitors of the inducible human TNF-α promoter activity as well as the inducible synthesis of TNF-α.

Podoscyphic acid (1a) is produced by the fungus *Podoscypha petalodes* and was originally isolated as an inhibitor of retroviral reverse transcriptases.⁸ It is a

^{2.} Preparation of imidazo[1,2-a]pyridine derivatives

Keywords: TNF-α; Inhibitor; Promoter activity; Inflammation; Podoscyphic acid; Semisynthesis.

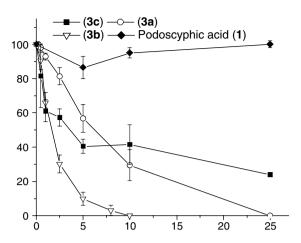

^{*} Corresponding author. Tel.: +46 462228213; fax: +46 462228209; e-mail: Olov.Sterner@organic.lu.se

Figure 1. (a) R=H; (b) R=Me; (c) R=Et. Reaction and conditions: (a) triethylamine, CH₂Cl₂, reflux 3 h (yield 52–83%).

highly reactive compound, with a combination of electrophilic functionalities that enables it to take part in one or several nucleophilic additions. An interesting nucleophilic partner is the enaminoester (2) possessing a highly polarised double bond.⁹ It has previously been utilised for the synthesis of tetrahydropyridines and piperidines through cyclization reactions with a variety of electrophiles and 1,3-dipoles. 10 Presumably, the enamine attacks the activated carbon-carbon double bond on C-2 whereafter the secondary amine nitrogen adds to the C-4 keto group, yielding the novel imidazo[1,2appridine 3a. The reaction could also be performed with esters of podoscyphic acid, and the methyl ester 3b as well as the ethyl ester 3c were also prepared. The relative configuration was suggested by NOEs observed between the 13-OH and 15-H as well as 14-Hβ, and between 11- H_2 and 14-H α (Figure 1).

3. Effect on hTNF-α promoter activity

The assay used in this investigation is based on the expression of a human TNF-α transcriptional reporter in Jurkat T cells. Transfection of Jurkat cells with a hTNF-α promoter driven luciferase reporter gene plasmid and stimulation with 32 nM TPA and 2 µM ionomycin resulted in a 17- to 20-fold activation over the basal level of luciferase expression. The effects of the imidazo[1,2-a]pyridine derivatives are shown in Figure 2. The methyl ester **3b** is the most potent, inhibiting the TPA/ionomycin stimulated expression of the TNFα promoter mediated luciferase expression in Jurkat cells with an IC₅₀-value of 2.0 μ g/ml (3.6 μ M). The free acid 3a and the ethyl ester 3c were less potent with IC₅₀-values of 5–10 μ g/ml (9.5–19 μ M). Treatment of the cells with the ethyl ester 3c actually resulted in an incomplete inhibition of TNF-α promoter driven repor-

Figure 2. Effect of podoscyphic acid (1a) and the imidazo[1,2-a]pyridine derivatives 3a, 3b and 3c on hTNF- α promoter activity. See Section 6 for details.

ter gene expression, with a remaining activity of 25% of the induced control even at the highest concentration tested (55 μ M). The parent compound podoscyphic acid (1) showed no inhibitory effects on the TPA/ionomycin induced TNF- α promoter activity in Jurkat cells.

4. Effect on TNF-α production

The influence of the compounds on TNF- α production was investigated in myelomonocytic U937 leukaemia cells which have been shown to release significant amounts of TNF- α following TPA treatment. Pretreatment of U937 cells with the test compounds and stimulation with 50 ng/ml TPA resulted in a dose dependent inhibition of TNF- α synthesis, which was comparable to the results obtained in the hTNF- α promoter reporter gene assay. As shown in Figure 3, the methyl ester 3b blocked the TNF- α synthesis with an IC50-value of 2.5 µg/ml (4.6 µM). Compound 2 was less active with

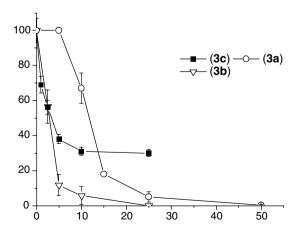


Figure 3. Effect of the imidazo[1,2-a]pyridine derivatives 3a, 3b and 3c on TNF- α production. U937 cells were pretreated for 1 h with or without test compounds and stimulated with 50 ng/ml TPA for additional 16 h. TNF- α concentrations from cell supernatants were determined by ELISA. Control (100%): stimulation only (905 pg/ml TNF- α). Results are representative of three independent experiments.

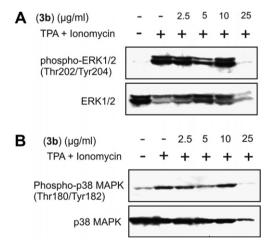
Table 1. Effect of compound (3) on SEAP or luciferase reporter gene expression in HepG2, HeLa S3 and Jurkat cells

Reporter gene assay	Cell line	Stimulus	(3) IC ₅₀ μg/ml (μM)
$3 \times AP-1-SEAP$	HeLa S3	TPA (25 ng/ml)	2.5 (4.6)
$5 \times GAS/ISRE-SEAP$	HeLa S3	IFN- α (0.5 ng/ml)/IFN- γ (10 ng/ml)	2.5 (4.6)
$8 \times IL$ -6RE II–SEAP	HepG2	IL-6 (10 ng/ml)	10 (18.4)
$5 \times NF-AT/AP-1-SEAP$	Jurkat	TPA (10 ng/ml)/ionomycin (2.5 μL)	2.5 (4.6)
$5 \times NF - \kappa B - SEAP$	Jurkat	TPA (10 ng/ml)/ionomycin (2.5 μL)	2.5 (4.6)
HCOX-2-pro-Luc	Jurkat	TPA (10 ng/ml)/ionomycin (2.5 μL)	2.5 (4.6)

The cell lines were transiently transfected with the indicated reporter gene constructs and the expression of the reporter genes was induced as described in Section 6.

IC₅₀-values of 10–15 μ g/ml, while **3c**, as in the case for the hTNF- α transcriptional reporter, only caused a partial inhibition of TNF- α synthesis.

In order to test the specificity of the most active compound, we determined the effect of 3b on the GAS/ ISRE, AP-1, NF-κB, NF-AT and human COX-2 promoter driven expression of the reporter genes SEAP or luciferase in HeLa S3 and Jurkat cells. Compound 3b inhibited the AP-1, NF-κB, GAS/ISRE and NF-AT mediated SEAP expression in transiently transfected HeLa S3 or Jurkat cells with IC₅₀-values of 2.5 μg/ml (4.6 µM, see Table 1). The IL-6 induced expression of the IL-6RE driven reporter plasmid in transiently transfected HepG2 cells was inhibited by 3b to a 4-fold lesser extent. Beside TNF-α, the inducible isoform of the cyclooxygenase COX-2 is upregulated in many cell types by proinflammatory stimuli and it has been shown that the signalling mechanisms governing COX-2 expression also contribute to the inducible TNF-expression. 12,13 We therefore investigated the influence of 3b on a human COX-2 transcriptional reporter. The compound inhibited the TPA/ionomycin stimulation of the COX-2 promoter activity with an IC₅₀-value of 2.5 μg/ml $(4.6 \mu M)$.


Cytotoxic properties of the compounds were evaluated against various cultured neoplastic cell lines. As shown in Table 2, cytotoxic activities against most tested cell lines could be observed for all compounds with CC50-values starting from 10 to 25 μ g/ml (18–20.7 μ M) during a 48-h incubation period. The CC50-values for all compounds against HepG2 cells were approximately 2- to 5-fold higher.

It has recently been shown that the expression of TNF- α in T cells is regulated by several distinct MAP kinase pathways. Inhibition of ERK or p38 activating pathway by PD98059 or SB203580 resulted in a strong inhibition of TNF- α promoter dependent transcription as well as TNF- α production. In order to determine whether **3b** affects the activation of the ERK and p38 MAPK, Western blot analyses were performed with antibodies specific for the phosphorylated form of ERK or p38. As shown in Figure 4, treatment of Jurkat cells with TPA/ionomycin resulted in a strong induction of ERK1/2 phosphorylation. The p38 phosphorylation was induced to a lesser extent. Pretreatment of the cells with up to $10 \,\mu\text{g/ml}$ of **3b** showed no inhibition of ERK1/2 or p38 phosphorylation. The reduction of

Table 2. Cytotoxic activities of the synthesized compounds towards various tumour cell lines in vitro

Cell line	3a CC _{50/90} (μg/ml)	3b CC _{50/90} (μg/ml)	3c CC _{50/90} (μg/ml)
Colo 320	10/50	10/50	10-25/>50
HeLa S3	25-50/-	10-25/25	10/50
HepG2	>50/-	50/-	50/-
RAW 264.2	10-25/50	5-10/25	5-10/25
HL-60	10-25/50	10-25/25	10-25/25
Jurkat	10-26/50	10-25/50	10-25/50
U937	10-25/25	10-25/25	10-25/25

Both CC₅₀ and CC₉₀-values are given.

Figure 4. Effect of **3b** on ERK1/2 (A) and p38 (B) phosphorylation. Jurkat cells were pretreated for 1 h with or without test compounds and induced with 25 ng/ml TPA and 2.5 μ M ionomycin for 30 min. Subsequently total cell extracts were prepared and equal amounts of protein analyzed by Western blotting for A: ERK1/2 phosphorylation with a phospho-ERK1/2 antibody and B: p38 phosphorylation with a phospho-p38 antibody.

ERK1/2 and p38 phosphorylation at higher concentrations is probably due to cytotoxic effects.

These results indicate that the inhibition of TNF- α promoter activity by **3b** did not result from the interference with two signalling pathways responsible for the activation of the transcription factor ATF2, which cooperates functionally with NF-AT family proteins to activate TNF- α gene transcription in T cells. ^{15,16} The transcription factors of the NF-AT family are expressed in most immune-system cells and play a pivotal role in the

transcription of cytokine genes and other genes critical for the immune response. NF-AT is also notable for its ability to bind cooperatively with transcription factors of the AP-1 family to composite NF-AT:AP-1 sites, as found in the regulatory regions of many genes that are inducibly transcribed by the immune-system cells.¹⁷ The reporter gene vector pGE3-NF-AT used in this work contains the distal NF-AT:AP-1 site of the human IL-2 promoter. It is therefore conceivable that 3b interferes with the signalling cascade leading to NF-AT activation.¹⁸ In addition, compound 3b inhibited the NF-κB, AP-1 and STAT1 mediated gene expression but the exact cellular target remains to be determined. Interestingly 3b did not inhibit the inducible expression of the COX-2 and iNOS proteins in LPS/IFN-y stimulated murine monocytic RAW 264.7 cells (data not shown), which indicates a preferential target within the signalling pathways leading to TNF- α expression in T cells.

5. Conclusions

A set of novel imidazo[1,2-a]pyridine derivatives, which inhibit the inducible expression of TNF- α in T cells, have been prepared from podoscyphic acid. Since TNF- α is one of the major proinflammatory cytokines, the compounds may serve as important tools for increasing our understanding about the mechanisms by which it acts as well as for the development of drugs interfering with the signalling pathways leading to the inducible expression of the TNF- α gene. The methyl ester **3b** was found to be more potent than the free acid **3a** and the ethyl ester **3c**, but a more comprehensive study is needed to establish clear structure—activity relationships. Further investigations on the mode of action of the compounds to characterize the cellular targets are now under way.

6. Experimental

6.1. Chemistry, general procedures

Unless otherwise noted, chemicals were of p.a. quality and obtained from commercial suppliers and used without further purification. TLC analyses were made on 'Merck DC-Alufolien Kieselgel 60 F254' SiO₂ plates, visualised by spraying with anisaldehyde/sulfuric acid and warming to 120 °C. The MS spectrum (direct inlet, 70 eV) was recorded with a JEOL SX102 spectrometer, and NMR spectra (in CDCl₃) with a Bruker ARX 500 spectrometer at 500 MHz (1 H) and 125 MHz (13 C). The chemical shifts are reported in ppm with the solvent signals ($\delta_{\rm H}$ = 7.26 and $\delta_{\rm C}$ = 77.0) as reference. COSY, HMQC, HMBC and HETCOR experiments were recorded with gradient enhancements using sine shaped gradient pulses. Flash chromatography employed Grace Amicon silica gel 60 (35–70 μm).

Podoscyphic acid (1a) was synthesised, ¹⁹ the methyl ester 1b was prepared with diazomethane in diethyl ether, while the ethyl ester 1c was synthesised. ¹⁹ Ethyl (1-benzylimidazolidin-2-ylidene)acetate (2) was prepared from

N-benzyl-1,2-diaminoethane and the imidate obtained from ethyl cyanoacetate.²⁰

The structures of the imidazo[1,2-a]pyridine derivatives were determined by high resolution NMR spectroscopy and mass spectrometry. The 13 C NMR signal for C-17 is broadened and weak in all derivatives, also in compound **2**, and was actually not observed in the 13 C NMR spectrum of the free acid **3a**. However, high resolution MS experiments clearly show that the composition of **3a** is $C_{30}H_{44}N_2O_6$.

6.1.1. 1-Benzyl-5-dodecanoyl-5-hydroxy-1,2,3,5,6,7-hexahydro-imidazo[1,2-a|pyridine-7,8-dicarboxylic acid-8ethyl ester (3a). To a stirred solution of podoscyphic acid (1a) (50 mg, 0.177 mmol) and 2 (43.5 mg, 0.177 mmol) in CH₂Cl₂ (5 ml) was added a catalytic amount of triethylamine (5 µl) and the reaction mixture was refluxed and monitored on TLC until no more starting material could be detected (approx. 3 h). The solvent was removed in vacuo and the residue was purified by chromatography on silica gel, eluted with CH₂Cl₂/ MeOH 30:1.77 mg pure product (83%) was obtained as a yellowish waxy solid; ¹H NMR (500 MHz, CDCl₃): δ 0.84 (t, J = 7.0 Hz, 3H, H-1), 1.24 (t, J = 7.0 Hz, 3H, H-20), 1.20-1.28 (m, 16H, H2-H9), 1.54 (m, 2H, H-10), 1.83 (dd, J = 14.7 and 4.1 Hz, 1H, H-14), 2.62 (m, 1H, H-11), 2.83 (m, 2H, H-11), 3.54 (t, J = 3.0 Hz, 1H, H-15), 3.62 (m, 1H, H-24), 3.66 (m, 2H, H-23), 3.99 (m, 1H, H-24), 4.21 (m, 2H, H-19), 4.51 (d, J = 15 Hz, 1H, H-26), 4.76 (d, J = 15 Hz, 1H, H-26), 4.96 (br s, 1H, H-(-OH)-13), 7.29-7.40 (m, 5H, H-28-H-30); ¹³C NMR (125 MHz, CDCl₃): δ 13.9 (C-20), 14.0 (C-1), 22.5 (C-2), 23.0 (C-3), 29.0 (C-4), 29.2 (C-5), 29.3 (C-6), 29.4 (C-7), 29.5 (C-8), 29.5 (C-9), 31.5 (C-14), 31.8 (C-10), 37.2 (C-11), 41.2 (C-15), 43.1 (C-24), 47.1 (C-23), 50.9 (C-26), 63.1 (C-19), 88.8 (C-13), 128.5 (C-30), 129.2 (C-28), 129.3 (C-29), 131.4 (C-27), 162.5 (C-21), 166.0 (C-18), 174.2 (C-16), 207.2 (C-12); HRFABMS: 529.3296 (M+H⁺, C₃₀H₄₅N₂O₆ requires 529.3278).

6.1.2. 1-Benzyl-5-dodecanoyl-5-hydroxy-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridine-7,8-dicarboxylic acid-8ethyl ester-7-methyl ester (3b). The methyl ester of podoscyphic acid (1b) (46 mg, 0.155 mmol) and 1.2 equiv of 2 (46 mg, 0.186 mmol) were reacted as described for compound 3a, to afford 44 mg (52%), as a yellowish waxy solid; ¹H NMR (500 MHz, CDCl₃): δ 0.87 (t, J = 7.0 Hz, 3H, H-1), 1.14 (t, J = 7.1 Hz, 3H, H-20), 1.18-1.29 (m, 16H, H-2-H-9), 1.54 (m, 2H, H-10), 2.16 (dd, J = 13.8 and 6.9 Hz, 2H, H-14), 2.67 (d, J = 13.2 Hz, 1H), 2.65 (m, 2H, H-11), 2.96 (t, J = 8.2 Hz, 1H, H-23), 3.23 (m, 1H, H-24), 3.35 (m, 2H, H-23, H-24), 3.71 (s, 3H, H- R_2 =Me), 4.0 (d, J = 5.5 Hz, 1H, H-15), 4.05 (m, 2H, H-19), 4.45 (d, J = 15.2 Hz, 1H, H-26), 4.91 (d, J = 15.2 Hz, 1H, H-26), 4.96 (br s, 1H, H-(-OH)-13), 7.15-7.35 (m, 5H, H-28–H-30); 13 C NMR (125 MHz, CDCl₃): δ 14.0 (C-1), 14.5 (C-20), 22.6 (C-2), 23.4 (C-3), 29.0 (C-4), 29.1 (C-5), 29.2 (C-6), 29.2 (C-7), 29.3 (C-8), 29.3 (C-9), 31.8 (C-10), 34.5 (C-14), 36.8 (C-11), 37.8 (C-15), 42.2 (C-23), 47.3 (C-24), 52.2 $(C-R_2=Me)$, 55.4 (C-26), 58.8 (C- 19), 72.2 (C-17), 85.6 (C-13), 125.2 (C-30), 127.2

(C-28), 128.6 (C-29), 137.8 (C-27), 159.7 (C-21), 166.2 (C-18), 177.7 (C-16), 208.9 (C-12); HRFABMS: 543.3444 (M+H⁺, C₃₁H₄₇N₂O₆ requires 543.3435).

Compound **3b** was also prepared by treating **3a** (60 mg, 0.113 mmol) in diethyl ether with diazomethane at room temperature. Forty milligrams (63%), identical with **3b** prepared above, was obtained.

6.1.3. 1-Benzyl-5-dodecanoyl-5-hydroxy-1,2,3,5,6,7-hexahydro-imidazo[1,2-a]pyridine-7,8-dicarboxylic acid diethyl ester (3c). The ethyl ester of podoscyphic acid (1c) (46 mg, 0.148 mmol) and 1.2 equiv of 2 were reacted as described for compound (2) to afford 46 mg (56%) 3c as a yellowish waxy solid. ¹H NMR (500 MHz, CDCl₃): δ 0.89 (t, J = 6.9 Hz, 3H), 1.17 (t, J = 7.0 Hz, 3H), 1.17– 1.35 (m, 19 H), 1.60 (m, 2H), 2.25 (m, 1H), 2.67 (m, 2H), 3.0 (t, J = 5.5 Hz, 1H), 3.26 (m, 1H), 3.35 (m, 1H), 3.99 (d. J = 5.3 Hz. 1H), 4.07 (m. 2H), 4.18 (m. 2H). 4.43 (d, J = 15.3 Hz, 1H), 4.94 (d, J = 15.3 Hz, 1H), 5.57 (br s, 1H), 7.15–7.35 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 14.0, 14.1, 14.5, 22.6, 23.5, 29.1, 29.2, 29.3, 29.4, 29.5, 31.8, 34.3, 36.9, 37.9, 42.2, 47.2, 48.3, 55.4, 58.7, 61.1, 72.2, 85.6, 127.4, 128.3, 128.6, 137.8, 159.7, 166.2, 177.4, 208.9; HRFABMS: 557.3569 $(M+H^+, C_{32}H_{49}N_2O_6 \text{ requires } 557.3591).$

6.2. Biological assays

Jurkat cells (ATCC TIB 152), U937 cells (ATCC CRL1593), HL-60 cells (ATCC CCL 240), THP-1 cells (DSMZ ACC 16) and RAW 264.7 cells (ATCC TIB-71) were grown in RPMI 1640 medium supplemented with 10% foetal calf serum (FCS) and 65 μ g/ml penicillin G and 100 μ g/ml streptomycin sulfate. HepG2 cells (ATCC HB 8065), COLO 320 cells (DSMZ ACC 144) and HeLa S3 (ATCC CCL 2.2) were maintained in DMEM supplemented with 10% foetal calf serum. The assays for cytotoxicity were carried out as described previously. 21

6.2.1. Reporter gene assays. The 1.2 kb human TNF-α promoter was amplified by PCR from genomic DNA extracted from HeLa S3 cells as described recently.²² The PCR product was cloned into the XhoI-HindIII site of the pGL3-Basic vector (Promega) to generate the TNF-α promoter driven luciferase reporter plasmid pJR-TNF-pro. The reporter plasmid pMW-IRF7 was constructed by cloning eight copies of a class II IL-6 responsive element (IL-6RE II) of the IRF promoter immediately upstream of the thymidine kinase promoter driven SEAP reporter gene. The plasmid pRL-CMV for normalizing transfection efficiency was obtained from PROMEGA (Dual-Luciferase-Reporter-Assay). The reporter plasmids pGE3-NF, pTK-AP-1, pGE3-GAS/ ISRE and pGE3-NF-AT have been described recently.²³ Transfection of HepG2 cells was performed by electroporation (BioRad, GenePulser) as described.²³ The activity of the SEAP in the culture medium was determined 24 h after transfection using the Phospha-Light chemiluminescent assay (TROPIX, MA) according to the manufacturer's instructions with a luminometer. Jurkat cells were electroporated $(6 \times 10^7 \text{ cells/ml})$ in 0.2 ml 0.5× HEBS buffer, 50 μg of the pJR-TNF-pro vector or of the pGE3-NF-AT vector) and seeded in 96-well plates (6 × 10⁵ cells/ml in OPTIMEM containing 10% FCS) with and without test compounds. Reporter gene expression was induced with 32 nM TPA and 2 μM ionomycin. The reporter gene activity was measured 24 h after transfection using the luciferase assay system (Promega) according to the manufacturer's instructions with a luminometer in case of the pJR-TNF-pro vector or as described above in case of the pGE3-NF-AT vector. Transfection of HeLa S3 cells with pGE3-NF1, pGE3-GAS/ISRE or pTK-AP-1 and determination of the activity of the expressed SEAP was performed as described previously.²⁴

6.2.2. ELISA. TNF-α production in U937 cells pretreated for 1 h with or without test compounds and stimulated with 50 ng/ml TPA for additional 16 h was determined by ELISA (QuantiGlo™ human TNF-α ELISA, R&D Systems, UK) according to the manufacturer's instructions.

6.2.3. Western blots. Jurkat cells were starved for 24 h in RPMI 1640 medium containing 0.5% FCS, treated for 1 h with test compounds and induced with 25 ng/ml TPA and 2.5 µM ionomycin for 30 min. Total cell extracts were prepared using RIPA detergent buffer (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄·2H₂O, 1.5 mM KH₂PO₄, pH 7.4, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 1 μM Na₃VO₄, complete protease inhibitor cocktail 1:50 (Roche Diagnostics, Germany)) and cell extracts (50–100 µg protein) were subjected to 10% SDS-PAGE, transferred onto a nitrocellulose membrane and probed with antibodies specific for the phosphorylated forms of ERK1/2 and p38 (New England Biolabs, Frankfurt), and then with the appropriate secondary antibody conjugated to horseradish peroxidase. Immunoreactive proteins were visualised by the enhanced chemiluminescent detection system (ECL system. Amersham International, UK). After stripping of the membrane, the blots were reprobed with anti-ERK1/2 or anti-p38 antibodies and developed as described above.

Acknowledgment

Financial support from the Swedish Research Council is gratefully acknowledged.

References and notes

- 1. Zhang, X.; Tracey, K. J. Tumor necrosis factor. In *The Cytokine Handbook*; Thomson, A. W., Ed.; Academic Press: London, 1998; pp 517–592.
- Falvo, J. V.; Uglialoro, A. M.; Brinkman, B. M. N.; Merika, M.; Parekh, B. S.; Tsai, E. Y.; King, H. C.; Moriella, A. D.; Peralta, E. G.; Maniatis, T.; Thanos, D.; Goldfeld, A. Mol. Cell. Biol. 2000, 20, 2239.
- Feldmann, M.; Maini, R. N. Annu. Rev. Immunol. 2001, 19, 163.
- Palladino, M. A.; Bahjat, F. R.; Theodorakis, E. A.; Moldawer, L. L. Nat. Rev. 2003, 2, 736–746.

- Calabrese, L.; Fleischer, A. B., Jr. Am. J. Med. 2000, 108, 487.
- Lewis, A. J.; Manning, A. M. Curr. Opin. Chem. Biol. 1999, 3, 489.
- 7. Emery, J. G.; Ohlstein, E. H.; Jaye, M. TiPS 2001, 22, 233.
- Erkel, G.; Anke, T.; Velten, R.; Steglich, W. Z. Naturforsch. 1991, 46c, 442.
- Wang, M.; Liang, J.; Huang, Z. J. Chem. Res. (S) 1994, 166–167.
- (a) Jones, C. F. R.; Patel, P.; Hirst, C. S.; Smallridge, M. J. Tetrahedron 1998, 54, 6191–6200; (b) Jones, C. F. R.; Hirst, C. S. Tetrahedron Lett. 1989, 39, 5361–5364; (c) Jones, C. F. R.; Hirst, C. S. Tetrahedron Lett. 1989, 39, 5365–5368; (d) Huang, Z. T.; Wang, M. X. J. Chem. Soc., Perkin Trans. 1993, 1, 1085–1090.
- Hass, R.; Lonnemann, G.; Mannel, D.; Topley, N.; Hartmann, A.; Kohler, L.; Resch, K.; Goppelt-Strube, M. Leukoc. Res. 1991, 15, 327.
- Íñiguez, M. A.; Martínez- Martínez, S.; Punzón, C.; Redondo, J. M.; Fresno, M. J. Biol. Chem. 2000, 275, 23627–23635.
- Mestre, J. R.; Mackrell, P. J.; Rivadeneira, D. E.; Stapleton, P. P.; Tanabe, T.; Daly, J. M. J. Biol. Chem. 2001, 276, 3977–3982.

- Hoffmeyer, A.; Grosse-Wilde, A.; Flory, E.; Neufeld, B.; Kunz, M.; Rapp, U. R.; Ludwig, S. J. Biol. Chem. 1999, 274, 4319–4327.
- Tsai, E. Y.; Jain, J.; Pesavento, P. A.; Rao, A.; Goldfeld, A. E. Mol. Cell. Biol. 1996, 16, 459–467.
- Tsai, E. Y.; Yie, J.; Thanos, D.; Goldfeld, A. E. Mol. Cell. Biol. 1996, 16, 5232–5244.
- 17. Rao, A. Immunol. Today 1994, 15, 274-281.
- Serfling, E.; Berberich-Siebelt, F.; Chuvpilo, S.; Jankevics, E.; Klein-Hessling, S.; Twardzik, T.; Avots, A. Biochim. Biophys. Acta 2000, 1498, 1–18.
- 19. Eriksson, J.; Johansson, M.; Sterner, O. *Tetrahedron Lett.* **2002**, *43*, 891–895.
- Andersson, M. W.; Begley, M. J.; Jones, R. C. F.; Saunders, J. J. Chem. Soc., Perkin Trans. 1984, 1, 2599– 2602.
- 21. Weber, W.; Anke, T.; Steffan, B.; Steglich, W. *J. Antibiot.* **1990**, *43*, 207–212.
- Takashiba, S.; Shapira, L.; Amar, S.; Van Dyke, T. E. Gene 1993, 131, 307–308.
- Weidler, M.; Rether, J.; Anke, T.; Erkel, G. Biochem. Biophys. Res. Commun. 2000, 276, 447–453.
- Erkel, G.; Anke, T.; Sterner, O. Biochem. Biophys. Res. Commun. 1996, 226, 214–221.